

Scope

- · Definition
- · Composition
- Type of emulsions

Determination Test

- Selection of ingredients
- Emulsion consistency
- · Emulsion theory
- · Emulsifying agent
- Preparation
- · HLB system
- Stability

Emulsions

heterogenous systems of one liquid dispersed throughout another in the form of droplets usually exceeding 0.1 micrometre in diameter

Compositions

Internal/Discontinuous/Dispersed phase External/Continuous phase Emulsifying agent

Forms
Liquids
Semisolids

Emulsion Types

- 1. oil-in-water (o/w)
- 2. water-in-oil (w/o)
- 3. water-in-oil-in-water (w/o/w)
- 4. oil-in-water-in-oil (o/w/o)

Determination of Emulsion Types

- By phase ratio between oil and water phase
- By order of addition
 slowly add oil into water → o/w
- By type of emulsifier
 phase that the emulsifier is soluble will
 most probably be continuous phase

Tests for Identification of Emulsion Types

- Dilution test:
 emulsion can be diluted only with external phase
- · Dye test:
- CoCl₂/filter paper test:
 filter paper impregnated with CoCl₂ and dried
 (blue) changes to pink when o/w emulsion is
 added
- Fluorescence:
 oils fluoresce under UV light
- Conductivity: for ionic o/w emulsions
 o/w emulsions conduct electric current

Choice of Emulsion Types

- · Fats or oils for oral administration:
 - o/w is formed to mask unpleasant taste
- · For i.v. administration:
 - o/w
 - w/o
- For external application:
 - for water soluble drugs easily wash from skin non greasy texture

- w/o
occlusive effect → influence the absorption of drugs
cleansing skin
moisturizing creams (designed to prevent moisture loss from skin)

Choice of Oil Phase

- · The type of oil affect on:
 - viscosity
 - spread
 - film forming
 - the transport of drug into skin
- i.e. liquid paraffin (hard, soft and light liquid paraffin), silicone, beeswax, fatty alcohol and so on

Emulsion Consistency

Texture or feel of a product - viscosity

Rheological properties of emulsion can be controlled by:

1. Volume concentration of dispersed phase:

if increase → viscosity of product increase

if above about 60% — phase inversion

2. Particle size of disperse phase:

decrease size increase viscosity

small globule increase flocculation polydispersed system lower viscosity

- 3. Viscosity of continuous phase
- 4. Nature and concentration of emulsifying system

Purpose of Emulsions

Oral formulation

- 1. Enhancing bioavailability
- 2. Giving controlled rate of drug release
- 3. Affording protection to oxidation or hydrolysis

Topical formulation

- 1. Easily applied and can be formulated to eliminate oiliness and staining
- 2. Carrying water which is an excellent softener to skin

Emulsion Theory

- To explain how emulsifying agents act in promoting emulsification and in maintaining the stability of the resulting emulsion
 - Surface tension theory (important in initial formation)

The force causing each liquid to resist breaking up into smaller particle is called interfacial tension. Surfactants promote the lowering of this resistance

- Surface orientation theory

Emulsifying agent having a greater hydrophilic character than hydrophobic character will promote an o/w emulsion

- Plastic or interfacial film theory emulsifying agent surrounding the droplets of the internal phase as a thin layer of film adsorbed on the surface of the droplets, prevent the contact and coalescing of the internal phase

- Rate of coalescence theory

- Phase volume theory

Film

- Monomolecular film
- Multimolecular film
- Solid particle film

$$?E = ?^2?_{o/w} (1 - \cos ?)$$

- ?E = the energy to expel an absorbed particle from the interface into the phase that it is predominant wet
- ? = its contact angle between solid and water phase

Mechanism

- To form droplets
 - surface free energy or surface tension
 - system at its lowest free energy is thermodynamically stable
 - emulsions are not thermodynamically stable
- To stabilize droplets (by surfactants or polymers)
 - by reducing the interfacial tension
 - by packing of the emulsifier molecules

Microemulsions

- · The droplet size is below 0.15 micrometer
- Transparent
- Form spontaneously during preparation
- Thermodynamically stable (no change spontaneously, and if forced to change, it will return to the stable state)

Emulsifying agents

- must be present at the interface to prevent coalescence of the internal phase:
 - 1. To reduce the interfacial tension
 - 2. To be interfacial barrier (most influence on emulsion stability)
 - increase viscosity of continuous phase
 - energy barrier
 the electric double layer

the steric repulsion from absorbed polymer

Compositions

- Emulsifying agents, Emulsifiers, Emulgents, Surfactants
 - primary
 - auxiliary
- The other formulation additives
 - 1. Preservatives: MP:PP 10:1
 - 2. Antioxidants: BHT, BHA etc.
 - 3. Humectants: propylene glycol, glycerol, sorbitol

Fact of Emulsifying Agents

Structure

polar group

hydrocarbon

- Reside at interface
- When the concentration is increased in excess of CMC (the critical micellization concentration), micelles is formed

Properties

- 1. Compatible with the other ingredients
- 2. Not interfere with the stability or efficacy of the therapeutic agent
- 3. Stable and not deteriorate in the preparation
- 4. Nontoxic
- 5. Little odor, taste or color
- 6. Promote emulsification and to maintain the stability

Emulsifier Classification

According to ionic composed of an organic lipophilic group (surface active portion)

- · Synthetic and semisynthetic surfactants
 - Anionic
 - Cationic
 - Nonionic
 - Amphoteric
- Naturally occurring materials and their derivatives

Anionic Surfactants

- Soaps
 Fatty acid + Base
 Soaps
 - o/w emulsions

 - external use
 - combination of soap (TEA stearate) with an oil-soluble auxiliary emulsifier (cetyl alcohol) —> o/w mixed emulsifer
 - incompatible with polyvalent cations

Anionic Surfactants (cont.)

- Soap of di/trivalent metal

 Cal oleate → w/o emulsions
- Amine soaps: N(CH₂CH₂OH)₃
 neutral pH
 incompatible with acids and high
 concentration of electrolytes
- Sulfated and sulfonated compound:
 - SLS
 stable over high pH range
 o/w emulsions

- Sulfated and sulfonated compound (cont.)
 - SLS

fairly resistant to divalent metal ions used in combination with a nonionic oil-soluble emulsifying agent or fatty alcohol to produce a good emulsions

sodium dioctylsulfosuccinate
 used as wetting agent

Cationic surfactants

- Quaternary ammonium compounds:
 Cetyl trimethylammonium bromide
 (Cetrimide) CH₃(CH₂)₁₅N⁺(CH₃)₃Br⁻
- Used with nonionic, oil-soluble auxiliary emulsifiers
- Toxicity and irritancy
- Incompatible with anionic surfactants, polyvalent anions and unstable at high pH

Nonionic surfactants

- Low toxicity and irritancy oral, parenteral
- High degree of compatibility
- Less sensitive to change pH or to addition of electrolytes
- Most of them are based on:
 - 1. Hydrophobic part: FA or alcohol (C_{12-18})
 - 2. Hydrophilic part: alcohol (-OH) and/or ethylene oxide (-OCH₂CH₂)

Nonionic surfactants (cont.)

- - Self-emulsifying glycerol monostearate soap + glyceryl monooleate diethylene glycol monostearate propylene glycol monooleate

Nonionic surfactants (cont.)

- Sorbitan esters
 - the esterification of 1 or more of the hydroxyl groups of sorbitan with either lauric, oleic, palmitic or steraic acid
 - tend to form w/o
 - used with polysorbates to produce o/w or w/o

Nonionic surfactants (cont.)

- Polysorbates (Tween)
 - polyethylene glycol derivatives of the sorbitan ester
 - variation in water solubility based on:
 type of FA
 the number of oxyethylene gr. in the polyethylene glycol chains
 - compatible with most anionic, cationic and nonionic materials

- Polysorbates (cont.)
 - provide neutral pH and stable to the effects of heat, pH change and high conc. of electrolytes
 - low toxicity
 - unpleasant taste
 - form complex with preservatives

- Fatty alcohol polyglycol ethers
 - condensation products of polyethylene glycol and fatty alcohols: polyethylene glycol monocetyl ether (Cetomacrogol 1000)
 - high water solubility
 - stable over a wide pH range
 - salted out by high conc. of electrolytes
 - o/w emulsions (should used with oil-soluble auxiliary emulsifier: Cetostearyl alcohol

- Fatty acid polyglycol esters
 - stearate esters or polyoxyl stearates
 - i.e. polyoxyethylene 40 stearate (40 = the no. of oxyethylene units)

water-soluble used with stearyl alcohol to give o/w

- Poloxalkols
 - polyoxyethylene/polyoxypropylene copolymers
 - used for i.v. fat emulsions

- Higher fatty alcohol
 saturated aliphatic monohydeic alcohols: hexadecl (cetyl), octadecyl (stearyl)
 - used as auxiliary emulsifiers according to their ability to increase viscosity
 - i.e.

 cetostearyl alcohol + SLS/

 Cetrimide/

 Cetomacrogol 1000

Amphoteric surfactants

 charge depending on the pH of the system

low pH → cationic high pH → anionic

· i.e. lecithin: used to stabilize i.v. fat emulsion

Naturally Occurring Materials and Their Derivatives

Disadvantage

- batch to batch variation
- susceptible to bacterial and mold growth
- susceptible to alcohol, electrolytes
- Polysaccharides
 - i.e. acacia, tragacanth, sodium alginate anionic

stabilize o/w (internal)

forming a strong multimolecular film (hydrophilic barrier) round oil globule

- Semisynthetic polysaccharides
 - to reduce batch to batch variation
 - as o/w emulsifiers or stabilizer
 - i.e. MC (nonionic), CMC (anionic)

water absorbing property

odor: require antioxidant

- Sterol-containing substance
 - Beeswax: beeswax-borax
 - Wool fat (anhydrous lanolin)
 fatty alcohol with FA esters of cholesterol
 and other sterols
 form w/o
 emollient property

- Sterol-containing substance (cont.)
 - polyoxyethylene lanolin derivatives water soluble o/w emulsifier emollient property
 - wool alcohol
 cholesterol together with other alcohols
 w/o emulsifier
 no strong odor (but still require
 antioxidant)
 - Protein substances
 i.e. gelatin, egg yolk and casein
 o/w emulsifier
 gelatin; provide emulsion that is too fluid

Finely Divided Solids

- · i.e. bentonite, aluminium magnesium silicate, colloidal silicon dioxide
 - forming a coherent film which physical prevents coalescence of the dispersed globules
 - if the particles are:

 preferntially wetted by the aqueous phase → o/w emulsion

 preferntially wetted by the oil phase w/o emulsion

Preparation

- Method depending on:
 - the nature of emulsion components
 - the equipment available porcelain mortar and pestle bottle
 homogenizer/ hand homoginizer colloid mill

Continental or dry gum method

- 4:2:1 oil:water:gum primary emulsion
- Emulsifier is triturated with the oil in perfectly dry porcelain mortar

2 parts of water are added at once

triturate immediately, rapidly and continuously (until get a cracking sound)

aqueous solution is added (alcohol the last, if any)

bland oil should be added if oil is less than 20%

Prepare 50 ml (4:2:1)

Rx Calciferol solution 0.15 ml

Glycerin 0.30 ml

Water to 5.00 ml

Rx Calciferol solution 1.5 ml

Arachis oil 8.5 m

Water 5.0 ml

Acacia powder 2.5 ml

primary emulsion

English or Wet Gum Method

triturate gum with twice its weight of water in a mortar

oil is added slowly in portions

the mixture is triturated

after adding all of the oil, thoroughly mixed for several minute

Caution: the mixture become too thick (ropy) during the process, additional water may be blended

Bottle or Forbes Bottle Method

 Extemporaneous preparation for volatile oils or oil with low viscosity

gum + 2 parts of oil (dry bottle)

shake

water (volume equal to oil) is added in portions

shake

Beaker Method

Oil phase: heated about 5-10 degree above the highest melting point of ingredient (water bath)

Water phase: heated to the same temperature of oil phase (water bath)

Add: internal phase into external phase, mix, constant agitation being provided throughout the time of addition

Caution: - not to heat the phase above 85 degree

rate of cooling determining the final texture and consistancy